Publications
Patents
[1] L.V. Asryan and S. Luryi, "Semiconductor laser with reduced temperature sensitivity," U.S. Patent No. 6,870,178, Mar. 22, 2005; (U.S. Provisional Patent Application No. 60/272,202, filed on Feb. 28, 2001).
Publications: Book chapters
[3] L.V. Asryan and S. Luryi, "Quantum dot lasers: Theoretical overview," Chapter 4 (pp. 113-158) in Semiconductor Nanostructures for Optoelectronic Applications. Edited by Todd Steiner, Artech House, Inc.: Boston, 2004, 424 p., ISBN: 1-58053-751-0.
[2] L.V. Asryan and R.A. Suris. "Theory of threshold characteristics of quantum dot lasers: Effect of quantum dot parameter dispersion." Chapter 5 in Selected Topics in Electronics and Systems, vol. 25, "Quantum Dots." Edited by E. Borovitskaya and M.S. Shur, Singapore: World Scientific, 2002. 206 p., ISBN: 981-02-4918-7.
[1] L.V. Asryan and S. Luryi. "Temperature-insensitive semiconductor laser." Future Trends in Microelectronics: The Nano Millennium. Edited by S. Luryi, J.M. Xu, and A. Zaslavsky, Wiley Interscience, New York, 2002. pp. 219-230. ISBN: 0-471-21247-4.
Publications: Journal papers (all indexed in Web of Science)
Review papers on theory of quantum dot lasers
[90] L.V. Asryan. "Theoretical investigation of factors controlling the operating characteristics of quantum dot lasers: A review." J. Nanophoton., vol. 3, Art. no. 031601, 25 pages, Jan. 2009.
[89] L.V. Asryan and R.A. Suris. "Theory of threshold characteristics of semiconductor quantum dot lasers." Semicond., vol. 38, no. 1, pp. 1-22, Jan. 2004.
[88] L.V. Asryan and R.A. Suris. "Theory of threshold characteristics of quantum dot lasers: Effect of quantum dot parameter dispersion." International J. High Speed Electron. Syst., Special Issue on "Quantum Dot Heterostructures - Fabrication, Application, Theory," vol. 12, no. 1, pp. 111-176, Mar. 2002.
Papers on novel designs of quantum dot lasers:
Double tunneling-injection quantum dot lasers
[87] L.V. Asryan, “Effect of pumping delay on the modulation bandwidth in double tunneling-injection quantum dot lasers,” Opt. Lett., vol. 42, no. 1, pp. 97-100, Jan. 2017.
[86] L.V. Asryan, “Modulation bandwidth of a double tunnelling-injection quantum dot laser,” Semicond. Sci. Technol., vol. 30, no. 3, Art. no. 035022, 9 pages, Mar. 2015.
[85] D.-S. Han and L.V. Asryan, “Output power of a double tunneling-injection quantum dot laser,” Nanotechnology, vol. 21, no. 1, Art. no. 015201, 14 pages, Jan. 2010.
[84] D.-S. Han and L.V. Asryan, “Effect of the wetting layer on the output power of a double tunneling-injection quantum-dot laser,” J. Lightw. Technol., vol. 27, no. 24, pp. 5775-5782, Dec. 2009.
[83] D.-S. Han and L.V. Asryan, “Characteristic temperature of a tunneling-injection quantum dot laser: Effect of out-tunneling from quantum dots,” Solid-State Electron., vol. 52, no. 10, pp. 1674-1679, Oct. 2008.
[82] D.-S. Han and L.V. Asryan, “Tunneling-injection of electrons and holes into quantum dots: A tool for high-power lasing,” Appl. Phys. Lett., vol. 92, no. 25, Art. no. 251113, June 2008.
[81] L.V. Asryan and S. Luryi, "Temperature-insensitive semiconductor quantum dot laser," Solid-State Electron., vol. 47, no. 2, pp. 205-212, Feb. 2003.
[80] L.V. Asryan and S. Luryi, "Tunneling-injection quantum-dot laser: Ultrahigh temperature stability," IEEE J. Quantum Electron., vol. 37, no. 7, pp. 905-910, July 2001.
Papers on general theoretical approach to semiconductor lasers with a quantum-confined active region
[79] L.V. Asryan and Z.N. Sokolova, “Optical power of semiconductor lasers with a low-dimensional active region,” J. Appl. Phys., vol. 115, no. 2, Art. no. 023107, 7 pages, Jan. 2014.
[78] L.V. Asryan, “Spontaneous radiative recombination and nonradiative Auger recombination in quantum-confined heterostructures,” Quantum Electron., vol. 35, no. 12, pp. 1117-1120, Dec. 2005.
[77] L.V. Asryan and S. Luryi, "Effect of internal optical loss on threshold characteristics of semiconductor lasers with a quantum-confined active region," IEEE J. Quantum Electron., vol. 40, no. 7, pp. 833-843, July 2004.
[76] L.V. Asryan and S. Luryi, "Two lasing thresholds in semiconductor lasers with a quantum-confined active region," Appl. Phys. Lett., vol. 83, no. 26, pp. 5368-5370, Dec. 2003.
[75] L.V. Asryan, S. Luryi, and R.A. Suris, "Internal efficiency of semiconductor lasers with a quantum-confined active region," IEEE J. Quantum Electron., vol. 39, no. 3, pp. 404-418, Mar. 2003.
[74] L.V. Asryan, S. Luryi, and R.A. Suris, “Intrinsic nonlinearity of the light-current characteristic of semiconductor lasers with a quantum-confined active region,” Appl. Phys. Lett., vol. 81, no. 12, pp. 2154-2156, Sept. 2002.
Papers on theory of quantum dot lasers
[73] Y. Wu, L. Jiang, and L.V. Asryan, “Output power of a quantum dot laser: Effects of excited states,” J. Appl. Phys., vol. 118, no. 18, Art. no. 183107, 14 pages, Nov. 2015.
[72] Y. Wu and L.V. Asryan, “Direct and indirect capture of carriers into the lasing ground state and the light-current characteristic of quantum dot lasers,” J. Appl. Phys., vol. 115, no. 10, Art. no. 103105, 5 pages, March 2014.
[71] Y. Wu, R.A. Suris, and L.V. Asryan, “Effect of excited states on the ground-state modulation bandwidth in quantum dot lasers,” Appl. Phys. Lett., vol. 102, no. 19, Art. no. 191102, May 2013.
[70] Y. Wu, R.A. Suris, and L.V. Asryan, “Effect of internal optical loss on the modulation bandwidth of a quantum dot laser,” Appl. Phys. Lett., vol. 100, no. 13, Art. no. 131106, Mar. 2012.
[69] L.V. Asryan, Y. Wu, and R.A. Suris, “Carrier capture delay and modulation bandwidth in an edge-emitting quantum dot laser,” Appl. Phys. Lett., vol. 98, no. 13, Art. no. 131108, Mar. 2011.
[68] L.V. Asryan and R.A. Suris, “Upper limit for the modulation bandwidth of a quantum dot laser,” Appl. Phys. Lett., vol. 96, no. 22, Art. no. 221112, May 2010.
[67] L.V. Asryan, "Theory of semiconductor quantum dot lasers - Invited Talk," ECS (Electrochemical Society) Trans., vol. 25, no. 11, pp. 9-23, Nov. 2009.
[66] L. Jiang and L.V. Asryan, “Multimode emission and optical power in a semiconductor quantum dot laser,” Nanotechnology, vol. 19, no. 41, Art. no. 415204, 8 pages, Oct. 2008.
[65] L. Jiang and L.V. Asryan, “How many longitudinal modes can oscillate in a quantum dot laser: an analytical estimate,” IEEE Photon. Technol. Lett., vol. 20, no. 20, pp. 1661-1663, Oct. 2008.
[64] L. Jiang and L.V. Asryan, “Internal-loss-limited maximum operating temperature and characteristic temperature of quantum dot laser,” Laser Phys. Lett., vol. 4, no. 4, pp. 265-269, Apr. 2007.
[63] L. Jiang and L.V. Asryan, “Excited-state-mediated capture of carriers into the ground state and the saturation of optical power in quantum-dot lasers,” IEEE Photon. Technol. Lett., vol. 18, no. 24, pp. 2611-2613, Dec. 2006.
[62] L.V. Asryan, “Maximum power of quantum dot laser versus internal loss,” Appl. Phys. Lett., vol. 88, no. 7, Art. no. 073107, Feb. 2006.
[61] L.V. Asryan, M. Grundmann, N.N. Ledentsov, O. Stier, R.A. Suris, and D. Bimberg. "Maximum modal gain of a self-assembled InAs/GaAs quantum-dot laser". J. Appl. Phys., vol. 90, no. 3, pp. 1666-1668, Aug. 2001.
[60] L.V. Asryan, M. Grundmann, N.N. Ledentsov, O. Stier, R.A. Suris, and D. Bimberg. "Effect of excited-state transitions on the threshold characteristics of a quantum dot laser". IEEE J. Quantum Electron., vol. 37, no. 3, pp. 418-425, March 2001.
[59] L.V. Asryan and R.A. Suris. "Carrier Photoexcitation from Levels in Quantum Dots to States of the Continuum in Lasing". Semicond., vol. 35, no. 3, pp. 343-346, March 2001.
[58] L.V. Asryan and R.A. Suris. "Longitudinal spatial hole burning in a quantum-dot laser". IEEE J. Quantum Electron., vol. 36, no. 10, pp. 1151-1160, Oct. 2000.
[57] L.V. Asryan and R.A. Suris, “Spatial hole burning and multimode generation threshold in quantum-dot lasers,” Appl. Phys. Lett., vol. 74, no. 9, pp. 1215-1217, March 1999.
[56] L.V. Asryan and R.A. Suris. "Role of thermal ejection of carriers in the burning of spatial holes in quantum dot lasers". Semicond., vol. 33, no. 9, pp. 981-984, Sept. 1999.
[55] L.V. Asryan and R.A. Suris. "Temperature dependence of the threshold current density of a quantum dot laser". IEEE J. Quantum Electron., vol. 34, no. 5, pp. 841-850, May 1998.
[54] L. V. Asryan and R. A. Suris, “Characteristic temperature of quantum dot laser,” Electron. Lett., vol. 33, no. 22, pp. 1871-1872, Oct. 1997.
[53] L. V. Asryan and R. A. Suris, “Charge neutrality violation in quantum dot lasers,” IEEE J. Select. Topics Quantum Electron., vol. 3, no. 2, pp. 148-157, Apr. 1997.
[52] L. V. Asryan and R. A. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol., vol. 11, no. 4, pp. 554-567, Apr. 1996.
Papers on novel designs of quantum well lasers:
Quantum well lasers with asymmetric barrier layers
[51] Yu. S. Polubavkina, F. I. Zubov, E. I. Moiseev, N. V. Kryzhanovskaya, M. V. Maximov, E. S. Semenova, K. Yvind, L. V. Asryan, and A. E. Zhukov, “Specific features of waveguide recombination in laser structures with asymmetric barrier layers,” Semicond., vol. 51, no. 2, pp. 254-259, Feb. 2017.
[50] L. V. Asryan, F. I. Zubov, N. V. Kryzhanovskaya, M. V. Maximov, and A. E. Zhukov, “Theory of the power characteristics of quantum-well lasers with asymmetric barrier layers: Inclusion of asymmetry in electron and hole-state filling,” Semicond., vol. 50, no. 10, pp. 1362-1368, Oct. 2016.
[49] L. V. Asryan, F. I. Zubov, N. V. Kryzhanovskaya, M. V. Maximov, and A. E. Zhukov, “Lasers with asymmetric barrier layers: A promising type of injection lasers,” J. Phys. Conf. Ser., vol. 741, Art. no. 012111, Sept. 2016.
[48] F. I. Zubov, A. E. Zhukov, Yu. M. Shernyakov, M. V. Maximov, E. S. Semenova, L. V. Asryan, “Diode lasers with asymmetric barriers for 850 nm spectral range: experimental studies of power characteristics,” J. Phys. Conf. Ser., vol. 643, Art. no. 012042, Nov. 2015.
[47] F. I. Zubov, M. V. Maximov, Yu. M. Shernyakov, N. V. Kryzhanovskaya, E. S. Semenova, K. Yvind, L. V. Asryan and A. E. Zhukov, “Suppression of sublinearity of light–current curve in 850 nm quantum well laser with asymmetric barrier layers,” Electron. Lett., vol. 51, no. 14, pp. 1106-1108, July 2015.
[46] A. E. Zhukov, L. V. Asryan, E. S. Semenova, F. I. Zubov, N. V. Kryzhanovskaya, and M. V. Maximov, “On the optimization of asymmetric barrier layers in InAlGaAs/AlGaAs laser heterostructures on GaAs substrates,” Semicond., vol. 49, no. 7, pp. 935-938, July 2015.
[45] F. I. Zubov, A. E. Zhukov, Yu. M. Shernyakov, M. V. Maximov, N. V. Kryzhanovskaya, K. Yvind, E. S. Semenova, and L. V. Asryan, “The effect of asymmetric barrier layers in the waveguide region on power characteristics of QW lasers,” Technical Phys. Lett., vol. 41, no. 5, pp. 439-442, May 2015.
[44] L.V. Asryan, N.V. Kryzhanovskaya, M.V. Maximov, F.I. Zubov, and A.E. Zhukov, “Light-current characteristic of a quantum well laser with asymmetric barrier layers,” J. Appl. Phys., vol. 114, no. 14, Art. no. 143103, Oct. 2013.
[43] A.E. Zhukov, L.V. Asryan, Yu.M. Shernyakov, M.V. Maximov, F.I. Zubov, N.V. Kryzhanovskaya, K. Yvind, and E.S. Semenova, “Effect of asymmetric barrier layers in the waveguide region on the temperature characteristics of quantum-well lasers,” Semicond., vol. 46, no. 8, pp. 1027-1031, Aug. 2012.
[42] A.E. Zhukov, N.V. Kryzhanovskaya, F.I. Zubov, Y.M. Shernyakov, M.V. Maximov, E.S. Semenova, K. Yvind, and L.V. Asryan, “Improvement of temperature-stability in a quantum well laser with asymmetric barrier layers,” Appl. Phys. Lett., vol. 100, no. 2, Art. no. 021107, Jan. 2012.
[41] L.V. Asryan, N.V. Kryzhanovskaya, M.V. Maximov, A.Yu. Egorov, and A.E. Zhukov, "Bandedge-engineered quantum well laser," Semicond. Sci. Technol., vol. 26, no. 5, Art. no. 055025, 8 pages, May 2011.
[40] A.E. Zhukov, N.V. Kryzhanovskaya, M.V. Maximov, A.Yu. Egorov, M.M. Pavlov, F.I. Zubov, and L.V. Asryan, “Semiconductor lasers with asymmetric barrier layers: An approach to high temperature stability,” Semicond., vol. 45, no. 4, pp. 530-535, Apr. 2011.
Papers on experiment and theory of quantum dot lasers
[39] L.V. Asryan, “Limitations on standard procedure of determining internal loss and efficiency in quantum dot lasers,” J. Appl. Phys., vol. 99, no. 1, Art. no. 013102, pp. 013102-1-013102-4, Jan. 2006.
[38] M.V. Maksimov, D.S. Sizov, A.G. Makarov, I.N. Kayander, L.V. Asryan, A.E. Zhukov, V.M. Ustinov, N.A. Cherkashin, N.A. Bert, N.N. Ledentsov, and D. Bimberg. "Effect of nonradiative recombination centers on photoluminescence efficiency in quantum dot structures". Semicond., vol. 38, no. 10, pp. 1207-1211, Oct. 2004.
[37] M.V. Maximov, L.V. Asryan, Yu.M. Shernyakov, A.F. Tsatsul'nikov, I.N. Kaiander, V.V. Nikolaev, A.R. Kovsh, S.S. Mikhrin, V.M. Ustinov, A.E. Zhukov, Zh.I. Alferov, N.N. Ledentsov, and D. Bimberg. "Gain and threshold characteristics of long wavelength lasers based on InAs/GaAs quantum dots formed by activated alloy phase separation". IEEE J. Quantum Electron., vol. 37, no. 5, pp. 676-683, May 2001.
[36] M.V. Maximov, Yu.M. Shernyakov, A.F. Tsatsul'nikov, A.V. Lunev, A.V. Sakharov, V.M. Ustinov, A.Yu. Egorov, A.E. Zhukov, A.R. Kovsh, P.S. Kop'ev, L.V. Asryan, Zh.I. Alferov, N.N. Ledentsov, D. Bimberg, A.O. Kosogov, and P. Werner. "High-power continuous-wave operation of a InGaAs/AlGaAs quantum dot laser". J. Appl. Phys., vol. 83, no. 10, pp. 5561-5563, May 1998.
Papers on quantum well lasers
[35] Z. N. Sokolova, D. A. Veselov, N. A. Pikhtin, I. S. Tarasov, and L. V. Asryan, “Increase in the internal optical loss with increasing pump current and the output power of quantum well lasers,” Semicond., vol. 51, no. 7, pp. 959–964, July 2017.
[34] Z. N. Sokolova, N. A. Pikhtin, I. S. Tarasov, and L. V. Asryan, “Threshold characteristics of a semiconductor quantum-well laser: Inclusion of global electroneutrality in the structure,” Quantum Electron., vol. 46, no. 9, pp. 777-781, Sept. 2016.
[33] Z. N. Sokolova, N. A. Pikhtin, I. S. Tarasov, and L. V. Asryan, “Theory of operating characteristics of a semiconductor quantum well laser: Inclusion of global electroneutrality in the structure,” J. Phys. Conf. Ser., vol. 740, Art. no. 012002, 7 pages, Sept. 2016.
[32] Z. N. Sokolova, K. V. Bakhvalov, A. V. Lyutetskiy, N. A. Pikhtin, I. S. Tarasov, and L. V. Asryan, “Dependence of the electron capture velocity on the quantum-well depth in semiconductor lasers,” Semicond., vol. 50, no. 5, pp. 667-670, May 2016.
[31] Z.N. Sokolova, N.A. Pikhtin, I.S. Tarasov, and L.V. Asryan, “Comparative analysis of the effects of electron and hole capture on the power characteristics of a semiconductor quantum-well laser,” Semicond., vol. 49, no. 11, pp. 1506-1510, Nov. 2015.
[30] Z.N. Sokolova, K.V. Bakhvalov, A.V. Lyutetskiy, N.A. Pikhtin, I.S. Tarasov, and L.V. Asryan, "Method for determination of capture velocity of charge carriers into quantum well in semiconductor laser," Electron. Lett., vol. 51, no. 10, pp. 780-782, May 2015.
[29] Z.N. Sokolova, I.S. Tarasov, and L.V. Asryan, "Calculation of output characteristics of semiconductor quantum-well lasers with account for both electrons and holes," Quantum Electron., vol. 44, no. 9, pp. 801-805, Sept. 2014.
[28] Z.N. Sokolova, I.S. Tarasov, and L.V. Asryan, "Threshold characteristics of semiconductor lasers under conditions of violation of electroneutrality in quantum wells," Quantum Electron., vol. 43, no. 5, pp. 428-432, May 2013.
[27] Z.N. Sokolova, I.S. Tarasov, and L.V. Asryan. “Effect of the number of quantum wells in the active region on the linearity of the light–current characteristic of a semiconductor laser,” Semicond., vol. 46, no. 8, pp. 1044–1050, Aug. 2012.
[26] Z.N. Sokolova, I.S. Tarasov, and L.V. Asryan. "Capture of charge carriers and output power of a quantum well laser". Semicond., vol. 45, no. 11, pp. 1494–1500, Nov. 2011.
[25] L.V. Asryan, N.A. Gun'ko, A.S. Polkovnikov, G.G. Zegrya, R.A. Suris, P.-K. Lau, and T. Makino. "Threshold characteristics of InGaAsP/InP multiple quantum well lasers". Semicond. Sci. Technol., vol. 15, no. 12, pp. 1131-1140, Dec. 2000.
[24] L.V. Asryan, N.A. Gun'ko, A.S. Polkovnikov, R.A. Suris, G.G. Zegrya, B.B. Elenkrig, S. Smetona, J.G. Simmons, P.-K. Lau, and T. Makino. "High power and high temperature operation of InGaAsP/InP multiple quantum well lasers". Semicond. Sci. Technol., vol. 14, no. 12, pp. 1069-1075, Dec. 1999.
Papers on tunneling phenomena in low-dimensional systems
[23] V.G. Talalaev, A.A. Tonkikh, N.D. Zakharov, A.V. Senichev, J.W. Tomm, P. Werner, B.V. Novikov, L.V. Asryan, B. Fuhrmann, J. Schilling, H.S. Leipner, A.D. Bouraulev, Yu.B. Samsonenko, A.I. Khrebtov, I.P. Soshnikov, and G.E. Cirlin, “Light-Emitting Tunneling Nanostructures Based on Quantum Dots in a Si and GaAs Matrix,” Semicond., vol. 46, no. 11, pp. 1460-1470, Nov. 2012.
[22] V.G. Talalaev, A.V. Senichev, B.V. Novikov, J.W. Tomm, L.V. Asryan, N.D. Zakharov, P. Werner, A.D. Bouraulev, Yu.B. Samsonenko, A.I. Khrebtov, I.P. Soshnikov, and G.E. Cirlin, “Relaxation pathways of excitation in the tunnel-injection structures with quantum dots,” Proc. Saint Petersburg University, Series 4 “Physics/Chemistry”, no. 3, pp. 34–55, Sept. 2012.
[21] L.V. Asryan, S.G. Petrosyan, and A.Ya. Shik, "Tunnel current across a contact with a two-dimensional electron gas," Sov. Phys. Semicond., vol. 24, no. 12, pp. 1316-1318, Dec. 1990.
Papers on non-equilibrium carriers in inhomogeneous semiconductors and in p-n junctions
[20] L.V. Asryan and A.Ya. Shik. "Capture of nonequilibrium carriers and kinetics of the photoresponse of p-n junctions". Sov. Phys. Semicond., vol. 22, no. 12, pp. 1388-1390, Dec. 1988.
[19] L.V. Asryan and A.Ya. Shik. "Reverse current and photocurrent flowing through a p-n junction with a high concentration of recombination centers". Sov. Phys. Semicond., vol. 22, no. 4, pp. 383-386, Apr. 1988.
[18] L.V. Asryan, S.G. Petrosyan, and A.Ya. Shik. "Nonequilibrium carriers in inhomogeneous semiconductors". Sov. Phys. Semicond., vol. 21, no. 10, pp. 1070-1073, Oct. 1987.
[17] L.V. Asryan, Yu.A. Polovko, and A.Ya. Shik. "Separation and recombination of nonequilibrium carriers in the space charge region of a p-n junction". Sov. Phys. Semicond., vol. 21, no. 5, pp. 538-541, May 1987.
[16] L.V. Asryan, S.G. Petrosyan, and A.Ya. Shik. "Distribution of nonequilibrium carriers and photoconductivity in inhomogeneous semiconductors". JETP Lett., vol. 45, no. 4, pp. 232-234, Feb. 1987.
SPIE Proceedings
[15] L.V. Asryan, “Dynamic characteristics of double tunneling-injection quantum dot lasers,” Proc. SPIE, vol. 9382, Art. no. 93820H, 10 pages, Feb. 2015.
[14] L.V. Asryan, Y. Wu, and R.A. Suris, “Capture delay and modulation bandwidth in a quantum dot laser,” Proc. SPIE, vol. 7947, Art. no. 794708, 8 pages, Jan. 2011.
[13] D.-S. Han and L.V. Asryan, "Double tunneling-injection quantum dot laser: Effect of the wetting layer," Proc. SPIE, vol. 7610, Art. no. 76100T, 12 pages, Jan. 2010.
[12] L.V. Asryan and R.A. Suris, "Theory of relaxation oscillations and modulation response of a quantum dot laser," Proc. SPIE, vol. 7610, Art. no. 76100R, 7 pages, Jan. 2010.
[11] L. Jiang and L.V. Asryan, "Spatial hole burning and optical power in a quantum dot laser," Proc. SPIE, vol. 7224, Art. no. 72240R, 7 pages, Jan. 2009.
[10] D.-S. Han and L.V. Asryan, "Light-current curve of a tunneling-injection quantum dot laser," Proc. SPIE, vol. 6902, Art. no. 69020B, 12 pages, Jan. 2008.
[9] L. Jiang and L.V. Asryan, "Effect of excited states on light-current characteristic of a quantum dot laser," Proc. SPIE, vol. 6481, Art. no. 648108, 7 pages, Jan. 2007.
[8] L. Jiang and L.V. Asryan, "Maximum operating temperature and characteristic temperature of a quantum dot laser in the presence of internal loss," Proc. SPIE, vol. 6481, Art. no. 648107, 6 pages, Jan. 2007.
[7] L.V. Asryan, "Feasibility of conventional method of extracting internal loss and internal quantum efficiency in edge-emitting quantum dot lasers," Proc. SPIE, vol. 6129, Art. no. 612903, 8 pages, Jan. 2006.
[6] L.V. Asryan and S. Luryi, "Internal optical loss and threshold characteristics of semiconductor lasers with a reduced-dimensionality active region," Proc. SPIE, vol. 5349, pp. 69-80, Jan. 2004.
[5] L.V. Asryan and S. Luryi, "Tunneling-injection quantum dot laser," Proc. SPIE, vol. 4656, pp. 59-68, Jan. 2002.
[4] L.V. Asryan, M. Grundmann, N.N. Ledentsov, O. Stier, R.A. Suris, and D. Bimberg, "Effect of excited-state transitions on the threshold characteristics of a quantum dot laser," Proc. SPIE, vol. 3944, pp. 823-834, Jan. 2000.
[3] L.V. Asryan and R.A. Suris, "Spatial hole burning in a quantum dot laser," Proc. SPIE, vol. 3625, pp. 293-301, Jan. 1999.
[2] L.V. Asryan and R.A. Suris, "Temperature sensitivity of threshold current density of a quantum dot laser," Proc. SPIE, vol. 3283, pp. 816-827, Jan. 1998.
[1] R.A. Suris and L.V. Asryan, "Quantum-dot laser: Gain spectrum inhomogeneous broadening and threshold current," Proc. SPIE, vol. 2399, pp. 433-444, Feb. 1995.